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ABSTRACT

We study two problems related to the existence of Hamilton cycles in

random graphs. The first question relates to the number of edge disjoint

Hamilton cycles that the random graph Gn,p contains. δ(G)/2 is an upper

bound and we show that if p ≤ (1 + o(1)) lnn/n then this upper bound

is tight whp. The second question relates to how many edges can be

adversarially removed from Gn,p without destroying Hamiltonicity. We

show that if p ≥ K lnn/n then there exists a constant α > 0 such that

whp G − H is Hamiltonian for all choices of H as an n-vertex graph with

maximum degree ∆(H) ≤ αK ln n.
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1. Introduction

In this paper, we give results on two problems related to Hamilton cycles in

random graphs.

1.1. Edge Disjoint Hamilton Cycles. It was shown by Komlós and Sze-

merédi [8] that if p = ln n+ln ln n+c
n then,

lim
n→∞

Pr(Gn,p is Hamiltonian) = lim
n→∞

Pr(δ(Gn,p) ≥ 2).

Bollobás [3], Ajtai, Komlós and Szemerédi [1] proved a hitting time version of

this statement, i.e., whp1, as we add random edges e1, e2, . . . , em one by one to

an empty graph, the graph Gm = ([n], {e1, e2, . . . , em}) becomes Hamiltonian

at exactly the point when the minimum degree reaches two.

Let us say that a graph G has property H if it contains bδ(G)/2c edge disjoint

Hamilton cycles plus a further edge disjoint (near) perfect matching in the case

δ(G) is odd. (Here a (near) perfect matching is one of size bn/2c). Bollobás

and Frieze [5] showed that whp Gm has property H as long as the minimum

degree is O(1).

It is reasonable to conjecture that whp Gn,p has property H for any 0 ≤ p ≤ 1.

Our first result is to show that this is true for p ≤ (1 + o(1)) ln n/n which

strengthens the non-hitting time version of the result quoted from [5].

Theorem 1: Let p(n) ≤ (1 + o(1)) ln n/n. Then whp Gn,p has property H.

We remark that Frieze and Krivelevich [7] showed that if p is constant then

whp Gn,p almost satisfies H in the sense that it contains (1 − o(1))δ(Gn,p)/2

edge disjoint Hamilton cycles.

1.2. Robustness of Hamiltonicity. There has recently been increasing in-

terest in graphs which are only partially random. For example, Bohman, Frieze

and Martin [2] considered graphs of the form G = H + R where H is arbitrary,

but with high minimum degree and R is random. In this section, we consider

graphs of the form G = R−H where R is random and H is an arbitrary subset

of R, subject to some restrictions. In particular, R = Gn,p.

Sudakov and Vu [10] have recently shown that if p > (lnn)4/n and G = Gn,p,

then whp G− H is Hamiltonian for all choices of H as an n-vertex graph with

maximum degree ∆(H) ≤ (1/2 − ε)np. Here ε > 0 is an arbitrarily small

1 A sequence of events En is said to occur with high probability (whp) if limn→∞ Pr(En) = 1
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constant. Note that this bound on ∆(H) is essentially best possible, otherwise

R − H could be a bipartite graph with an uneven partition. In this note we

reduce p to O(ln n/n) but unfortunately, we have to reduce the bound on ∆(H)

as well.

Theorem 2: Let G = Gn,p where p ≥ K ln n/n for some sufficiently large

constant K > 0. There exists a constant α > 0 such that whp G − H is

Hamiltonian for all choices of H as an n-vertex graph with maximum degree

∆(H) ≤ αK ln n.

2. Proof of Theorem 1

2.1. Preliminaries. Observe first that the assumption on the edge probability

in this theorem can be easily seen to be essentially equivalent to the assumption

that the minimum degree δ(G) of Gn,p almost surely satisfies: δ(G) = o(log n).

Notation: For a graph G = (V, E) and two disjoint vertex subsets U, W we

denote:

N(U, W ) := {w ∈ W : w has a neighbor in U};

N(U) := N(U, V \ U);

E(U, W ) := {e ∈ E(G) : |e ∩ U | = 1, |e ∩ W | = 1};

e(U, W ) := |E(U, W )|.

Definition 1: A graph G = (V, E) is called a (k, c)-expander if |N(U)| ≥ c|U |

for every subset U ⊆ V (G) of cardinality |U | ≤ k.

Set

d0 = d0(n, p) = min

{

k : n

(

n − 1

k

)

pk(1 − p)n−1−k ≥ 1

}

.

One can prove that whp δ(Gn,p) satisfies

|δ(G) − d0| ≤ ln lnn.

Indeed, uk = n
(

n−1
k

)

pk(1 − p)n−1−k is the expected number of vertices of

degree k and uk+1/uk = (n−1−k)p
(k+1)(1−p) . Since d0 = o(lnn) we see that ud0−ln lnn =

o(1). Furthermore, ud0+ln ln n → ∞ and we can use the Chebyshev inequality

to show that ud0+ln lnn 6= 0 whp.
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Define

ρ =
2001(d0 + ln lnn)

n ln n
,

observe that ρ = o(1/n). Define p0 = p0(n) by

(1) 1 − p = (1 − p0)(1 − ρ) ,

observe that p0 = p − ρ(1 − o(1)). We can thus decompose G ∼ Gn,p as

G = G0 ∪ R, where G0 ∼ Gn,p0 , R ∼ Gn,ρ.

Notation: δ0 = δ(G0).

Claim 1: For a fixed G0, almost surely over the choice of R ∼ Gn,ρ, δ(G0) =

δ(G0 ∪ R).

Proof. Clearly, δ(G0) ≤ δ(G0 ∪R). In the opposite direction, take a vertex v of

minimum degree in G0. Recall that ρ = o(1/n), and therefore the edges of R

almost surely miss v, implying δ(G0 ∪ R) ≤ dG0∪R(v) = dG0(v) = δ(G0).

It thus follows that in order to prove Theorem 1 it is enough to prove that

almost surely G0 ∪ R contains bδ0/2c disjoint Hamilton cycles, plus an edge

disjoint (near) perfect matching if δ0 is odd.

Of course, we may assume that p(n) = (1 + o(1)) lnn/n, as otherwise whp

δ0 ≤ 1 and there is nothing new to prove.

2.2. Properties of G0 = Gn,p0 . Define

SMALL = {v ∈ V : dG0(v) ≤ 0.1 lnn} .

Lemma 3: The random graph G0 = Gn,p0 , with p0 defined by (1), has whp the

following properties:

(P1) G0 does not contain a path of at most four distinct edges (with possibly

identical endpoints), both of whose endpoints lie in SMALL.

(P2) Every vertex has at most one neighbor in SMALL.

(P3) Every set U ⊂ V of size |U | ≤ 100n/ lnn spans at most |U |(lnn)1/2

edges in G0.

(P4) For every two disjoint subsets U, W ⊂ V satisfying: |U | ≤ 100n/ lnn,

|W | ≤ 10−4|U | ln n,

eG0(U, W ) < 0.09|U | lnn .
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(P5) For every two disjoint subsets U, W ⊂ V satisfying: |U | ≥ 100n/ lnn,

|W | ≥ n/4,

eG0(U, W ) ≥ 0.1|U | lnn .

Proof. The above are rather standard statements about random graphs, so we

will be relatively brief in our arguments.

We start with proving (P1). Observe that for a vertex v ∈ V (G0), the degree

of v is binomially distributed with parameters n − 1 and p0. Therefore,

Pr[v ∈ SMALL] =
∑

k≤0.1 ln n

Pr[B(n − 1, p0) = k]

≤ 0.1 lnn

(

n − 1

0.1 lnn

)

p0.1 ln n(1 − p)n−1−0.1 ln n

≤ 0.1 lnn

(

10enp

ln n

)0.1 lnn

e−p(n−1−0.1 ln n)

< 290.1 ln ne−(1−o(1)) ln n

< n−0.6 .

Also, for a fixed pair u 6= v ∈ V (G0) the probability that u and v are connected

by a path of length ` in G0 is at most n`−1p`
0 = ((1+o(1)) lnn)`n−1. In addition,

since there is only one edge of the complete graph Kn incident to both u and v,

which is the edge (u, v), conditioning on the event “u ∈ SMALL” can increase

the probability of “v ∈ SMALL” at most 1
1−p = 1 + o(1) times. Therefore,

using the FKG inequality,

Pr[(u, v ∈ SMALL)&(dist(u, v) ≤ 4)] ≤ Pr[u, v ∈ SMALL]Pr[dist(u, v) ≤ 4]

≤ (1 + o(1))Pr[u ∈ SMALL]Pr[v ∈ SMALL]Pr[dist(u, v) ≤ 4]

≤ 4 · n−0.6 · n−0.6 ·
(1 + o(1)) ln4 n

n

< n−2.1.

Applying the union bound over all possible pairs of distinct vertices u, v

(O(n2) of them), we establish (P1). The case where u = v is treated similarly.

Property (P2) follows directly from (P1). Properties (P3), (P4) are straight-

forward first moment calculations which we thus omit.

We conclude with proving (P5). Fix U, W . Then the number of edges between

U and W is distributed binomially with parameters |U ||W | and p0 and has thus

expectation |U ||W |p0 ≥ (1 + o(1))|U | ln n/4. Therefore by applying standard
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Chernoff-type bounds on the lower tail of the binomial distribution, it follows

that

Pr[eG0(U, W ) ≤ 0.1|U | lnn] ≤ exp

{

−
(0.25|U | lnn − 0.1|U | lnn)2

2 · 0.25|U | lnn

}

= exp{−2 · 0.152|U | ln n}

< exp{−4n}.

As the pair (U, W ) can be chosen in at most 4n ways, (P5) follows by applying

the union bound.

2.3. Pósa’s Lemma and its consequences.

Definition 2: Let G = (V, E) be a non-Hamiltonian graph with a longest path

of length `. A pair (u, v) 6∈ E(G) is called a hole if adding (u, v) to G creates

a graph G′ which is Hamiltonian or contains a path longer than `. In addition,

if the maximum size of a matching in G is m < bn/2c then (u, v) 6∈ E(G) is

called a hole if adding (u, v) to G creates a graph G′ which contains a matching

of size m + 1.

Lemma 4: Let G be a non-Hamiltonian connected (k, 2)-expander. Then G

has a path of length at least 3k − 1 and at least k2/2 holes.

Proof. Let P = (v0, . . . , vk) be a longest path in graph G. A Pósa rotation

of P [9] with v0 fixed gives another longest path P ′ = (v0, . . . , vi, vk, . . . , vi+1)

created by adding edge (vk, vi) and deleting edge (vi, vi+1). Let ENDG(v0, P )

be the set of endpoints obtained by a sequence of Pósa rotations starting with

P , keeping v0 fixed and using an edge (vk, vi) of G.

Each vertex vj ∈ ENDG(v0, P ) can then be used as the initial vertex of

another set of longest paths whose endpoint set is ENDG(vj , P ), this time using

vj as the fixed vertex, but again only adding edges from G. Let ENDG(P ) =

{v0} ∪ ENDG(v0, P ).

The Pósa condition (see, e.g., [4, Ch.8.2])

|N(ENDG(v, P ))| ≤ 2 |ENDG(v, P )| − 1

for v ∈ ENDG(P ) together with the fact that G is a (k, 2)-expander implies that

|ENDG(v, P )| > k. The connectivity of G implies that closing a longest path

to a cycle either creates a Hamilton cycle or creates a longer path. For every

v ∈ ENDG(P ) and for every u ∈ ENDG(v, P ), a pair (u, v) is a hole. This
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shows that the number of holes is at least k2/2 (each hole is counted at most

twice for both its endpoints). As all neighbors in G of a subset U ⊆ ENDG(v, P )

of size |U | = k belong to P , due to the maximality of P , and G is a (k, 2)-

expander, it follows that the length of P is at least 3k − 1.

The following lemma is taken from [5].

Lemma 5: Let G be a (k, 1)-expander which does not contain a matching of

size bn/2c. Then G has a matching of size at least k and at least k2/2 holes.

Proof. Let M denote the set of maximum size matchings in G and let M ∈ M.

Fix v uncovered by M and now let S0 be the set of vertices reachable from v

by an even length alternating path with respect to M . Clearly, every vertex of

S0 is either v or is covered by M . Let x ∈ N(S0). Then x is covered by M , as

otherwise we can get a larger matching by using an alternating path from v to

y ∈ S0, and then an edge (y, x).

Let y1 satisfy (x, y1) ∈ M . We show that y1 ∈ S0. Now there exists y2 ∈ S0

such that (x, y2) ∈ E(G). Let P be an even length alternating path from v

terminating at y2. If P contains (x, y1) we can truncate it to terminate with

(x, y1), otherwise we can extend it using edges (y2, x) and (x, y1).

It follows that |N(S0)| < |S0| (since v ∈ S0, v is not covered by M). Recalling

that G is a (k, 1)-expander, we derive that |S0| > k. But then obviously the

union S0 ∪ N(S0) has at least 2k vertices and thus has at least 2k − 1 vertices

from M . This implies that |M | ≥ k.

Now we prove that G has at least k2/2 holes. Fix v uncovered by M and

now let S 6= ∅ be the other vertices uncovered by M . Let S1 ⊇ S be the set

of vertices reachable from S by an even length alternating path with respect to

M . As before we can prove that |S1| > k. For every u ∈ S1 there is an even

length alternating path with respect to M ending at u. Replacing the edges

along this path belonging to M with those outside of M gives a maximum

matching M ′ ∈ M not covering u. Thus (u, v) is a hole. Repeating now the

above argument with u, M ′ instead of v, M , respectively, gives at least k holes

touching u. Since |S1| ≥ k, and each hole is counted at most twice, altogether

we get at least |S1|k/2 ≥ k2/2 holes, as required.

2.4. The outline of the proof. We split the random graph R into dδ0/2e

identically distributed random graphs Ri. We then create bδ0/2c Hamilton

cycles Hi (plus a matching if needed). We use the random edges of Ri to fill a
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hole. Once Hi is created its edges are deleted from the graph and we proceed

to the next phase. At the ith stage, by the definition of δ0, the graph Gi has

minimum degree at least 2, moreover, most vertices in it have degree around lnn

(as each vertex loses at most δ0 = o(ln n) neighbors during the process), and

therefore Gi is connected, (n/3− cn/ lnn, 2)-expander by properties (P1)–(P5)

and has a path Pi of length at least n− cn/ ln n. We gradually augment Pi to a

Hamilton path, and then to a Hamilton cycle. At each substage of augmenting

Pi, the current graph has a quadratic number of holes, and therefore a constant

number of random edges are expected to augment the current path to a longer

one/close a Hamilton cycle. If δ0 is odd, we need a final stage to create a (near)

perfect matching.

2.5. Formal argument. We may assume that δ0 ≥ 2 as otherwise there is

nothing new to prove.

Define ρi by

1 − ρ = (1 − ρi)
dδ0/2e

observe that

ρi ≥
ρ

dδ0/2e
=

2001(d0 + ln lnn)

dδ0/2en lnn
≥

4000

n lnn
.

We then represent

R =

dδ0/2e
⋃

i=1

Ri ,

where Ri ∼ G(n, ρi).

For i = 1, . . . , dδ0/2e, let Gi be a graph obtained from G0 ∪
⋃i−1

j=1 Rj after

having deleted the first i− 1 Hamilton cycles (assuming that the previous i− 1

stages were successful, of course). Each vertex v has its degree in G0 reduced

by at most 2(i − 1) in Gi. Therefore if i ≤ bδ0/2c then the minimum degree

δ(Gi) satisfies δ(Gi) ≥ δ0 − 2(i − 1) ≥ 2. If δ0 is odd, then δ(Gdδ0/2e) ≥ 1.

We will now show that if i ≤ bδ0/2c then Gi is a (k, 2)-expander for k =

n/3 − 100n/(3 lnn). Let X ⊂ V be a set of |X | = t vertices.

Case 1 (t ≤ 100n/ lnn): Denote X0 = X ∩ SMALL, |X0| = t0, X1 = X \ X0,

|X1| = t1. Observe first that |NGi
(X0, V \ X)| ≥ 2t0 − t1. Indeed, in Gi all

edges touching X0 have their second endpoint outside X0, by property (P1).

We currently have at least two edges per each vertex in X0. By property (P2)

each vertex outside SMALL has at most one neighbor in X0 in the graph Gi.
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Thus the other endpoints of the edges from Gi touching X0 are distinct, and at

most t1 of them land in X1.

Now, X1 spans at most t1(lnn)1/2 edges in G0, by property (P3). As the

degrees in G0 of all vertices in X1 are at least 0.1 lnn, by the definition of

SMALL, at least 0.09t1 ln n edges leave X1 in G0. But then by property (P4)

|NG0(X1)| ≥ 10−4t1 ln n. By property (P1) at most t1 of those neighbors fall

into X0 ∪ NG0(X0), implying:

|NG0(X1, V \ X) − NG0(X0, V \ X)| ≥ 10−4t1 ln n − t1.

As in Gi every vertex lost at most δ0 neighbors compared to G0, we have

|NGi
(X1, V \ X) − NG0(X0, V \ X)| ≥ 10−4t1 ln n − t1 − δ0t1

≥ 10−5t1 ln n.

Altogether,

|NGi
(X)| ≥ 2t0 − t1 + 10−5t1 ln n ≥ 2t,

as claimed.

Case 2 (t ≥ 100n/ lnn): Recall that t ≤ n/3 − 100n/(3 lnn). Assume to the

contrary that |NGi
(X)| < 2|X |. Then in Gi there is a vertex subset Y disjoint

from X such that |Y | = n − 3t, and Gi has no edges between X and Y . But

then there were at most 2 min {bδ0/2c |X |, bδ0/2c |Y |} edges between X and Y

in G0.

If t ≤ n/4, then n − 3t ≥ n/4, and we get a contradiction to property (P5)

with X, Y substituted for U, W , respectively. If n/4 ≤ t ≤ n/3−(100n)/(3 lnn),

then n − 3t ≥ 100n/ lnn, again contradicting property (P5) with Y, X instead

of U, W , respectively.

We have proved that given properties (P1)–(P5) of G0, for each i the graph

Gi is deterministically an (n/3 − 100n/(3 lnn), 2)-expander.

A similar argument, in the case where δ0 is odd, shows that the graph Gbδ0/2c

is an (n/2 − 100n/(2 lnn), 1)-expander.

Recall that a random graph Ri added at the i-th stage is distributed according

to Gn,ρi
with ρi ≥

4000
n ln n , so ρi ≥

120
n2 · 100n

3 ln n and ρi > 20
n2 · 100n

2 ln n . Theorem 1 will

thus follow from:

Lemma 6: (a) Let G = (V, E) be a (n/3 − k, 2)-expander on n vertices,

where k = o(n). Let R be a random graph Gn,p with p(n) = 120k/n2.
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Then

Pr[G ∪ R is not Hamiltonian] < e−Ω(k).

(b) Let G = (V, E) be a (n/2−k, 1)-expander on n vertices, where k = o(n).

Let R be a random graph Gn,p with p(n) = 20k/n2. Then

Pr[G ∪ R does not contain a (near) perfect matching] < e−Ω(k).

Proof. (a) Observe that by Pósa’s Lemma and its consequences (Lemma 4):

• G is connected (due to expansion of G there is no room for two con-

nected components);

• G has a path of length at least n − 3k − 1 (due to Lemma 4);

• If a supergraph of Gi is non-Hamiltonian it has at least (n/3− k)2/2 >

n2/20 holes.

We split the random graph R into 6k independent identically distributed

graphs

R =
6k
⋃

i=1

Ri ,

where Ri ∼ Gn,pi
and pi ≥ p/(6k) = 20/n2. Set G0 = G, and for each

i = 1, . . . , 6k define

Gi = G ∪
i

⋃

j=1

Rj .

At stage i we add to Gi−1 the next random graph Ri. A stage i is called

successful if a longest path in Gi+1 is longer than that of Gi, or if Gi+1 is

already Hamiltonian. Clearly, if at least 3k + 1 stages are successful then the

final graph G6k is Hamiltonian. Observe that for Stage i to be successful, if

Gi−1 is not yet Hamiltonian, it is enough for the random graph Ri to hit one

of the holes of Gi−1. Thus, Stage i is unsuccessful with probability at most

(1 − pi)
n2/20 < 1/e. Let X be the random variable counting the number of

successful stages. Then X stochastically dominates Bin(6k, 1− 1/e). Hence by

standard estimates on the tails of the binomial distribution,

Pr[G ∪ R is not Hamiltonian] ≤ Pr[X ≤ 3k] < e−Ω(k) ,

as claimed.

The proof of (b) is similar.
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3. Proof of Theorem 2

We will prove the result for Gn,m, m = 1
2Kn lnn. This implies the result for

the Gn,p model.

This time we will use the coloring argument of Fenner and Frieze [6]. Consider

the following properties:

(Q1) K ln n/2 ≤ δ(G) ≤ ∆(G) ≤ 2K ln n.

(Q2) |S| ≤ n
K3(ln n)2 implies |E(S)| ≤ 2|S|.

(Q3) n
K3(ln n)2 ≤ |S| ≤ n/(K ln n) implies |N(S)| ≥ (K ln n/5)|S|.

(Q4) If S, T are disjoint sets of vertices and |S| ≥ |T | ≥ n/10, then e(S, T ) ≥

(K ln n/20)|T |.

Lemma 7: If K is sufficiently large, G = Gn,m satisfies (Q1)–(Q4) whp.

Proof. We will prove that Gn,p has these properties where p = K ln n/n. In-

flating error probabilities by O(n1/2) will show them for Gn,m. (Q1), (Q2) are

simple first moment calculations. We will check (Q3), (Q4). The size of N(S)

is distributed as the binomial Bin(n− s, 1− (1− p)s). Now 1− (1− p)s ≥ sp/2

if sp ≤ 1. Applying a Chernoff bound we see that

Pr(∃S failing (Q3)) ≤

n/(K ln n)
∑

s= n

K3(ln n)2

(

n

s

)

e−(n−s)sp/32 = o(1).

Similarly,

Pr(∃S, T failing (Q4)) ≤
∑

s≥n/10

∑

t≥n/10

(

n

s

)(

n

t

)

e−K lnn|T |/80 = o(1).

In the following we will asssume that K is sufficiently large and α is sufficiently

small so that our claimed inequalities hold. We do not attempt to optimise, since

we are far from getting α close to 1/2.

Now let H be a graph with ∆(H) ≤ αK ln n and let X be any βm subset of

E(G − H) satisfying ∆(X) ≤ 2βK ln n. Here we will be assuming 1 � β � α.

Let Γ = G − H − X .

Lemma 8: If (Q1)–(Q4) hold then

(a) Γ is an (n/30, 2)-expander;

(b) Γ is connected.
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Proof. (a)

(i) |S| ≤ n
3K3(ln n)2 . By construction, we have δ(Γ) ≥ (1/2−α−2β)K ln n.

So if |NΓ(S)| < 2|S| we find that NΓ(S) ∪ S contains at least ((1/2 −

α − 2β)K ln n)|S|/2 edges, contradicting (Q2).

(ii) n
3K3(ln n)2 ≤ |S| ≤ n/(K ln n). It follows from Q3 that

|NΓ(S)| ≥ ((1/5 − α − 2β)K ln n)|S| ≥ 2|S|.

(iii) n/(K ln n) ≤ |S| ≤ n/30. Choose S′ ⊆ S of size n/(K ln n). Then

|NΓ(S)| ≥ |NΓ(S′)| − |S| ≥ (1/5 − α − 2β)n − |S| ≥ 2|S|.

(b) It follows from (a) that if Γ is not connected then each component is of

size at least n/10. But then (Q4) implies that there are at least (1/20 − α −

2β)K|T | lnn edges between each pair of components in Γ, contradiction.

We now resort to our coloring argument. Let G1, G2, . . . , GM , M =
((n

2)
m

)

be

an enumeration of graphs with vertex set [n] and m edges.

For each i let Hi be a fixed sub-graph of Gi with ∆(Hi) ≤ αK ln n such

that Gi − Hi is non-Hamiltonian, if one exists. Otherwise Hi is an arbitrary

sub-graph of Gi with the same restrictions on the maximum degree. If graph

G is non-Hamiltonian, let λ(G) denote the length of the longest path in G and

let λ(G) = n if G is Hamiltonian. Now for a graph Gi, let Xi,1, Xi,2, . . . , be an

enumeration of all βm-subsets of E(Gi −Hi). Let Γi,j = Gi −Hi −Xi,j . Then

let

(2) ai,j =







































1



























(a) Gi satisfies (Q1)–(Q4)

(b) λ(Gi − Hi) = λ(Gi − Hi − Xi,j)

(c) Gi − Hi is not Hamiltonian

(d) ∆(X) ≤ 2βK ln n

0 otherwise

The notation An ' Bn stands for An ≥ (1 − o(1))Bn.

Lemma 9: If Gi satisfies (a) and (c) of (2) then
∑

j ai,j '
(

(1−α)m−n
βm

)

.

Proof. Hi has at most 1
2αKn ln n = αm edges and to ensure (b) all we have to

do is avoid some fixed longest path of Γi,j . Furthermore, almost all choices of

βm edges will induce a sub-graph with maximum degree at most 2βK ln n.
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Lemma 10: Let N =
(

n
2

)

. Then,

∑

i,j

ai,j ≤ m

(

N

m

)(

m

βm

)(

(1 − β)m

αm

)

(899/900)βm.

Proof. Let Ki,j = Gi − Xi,j and for a fixed graph K with (1 − β)m edges let

us estimate the number of (i, j) with Ki,j = K and ai,j = 1.

For each sub-graph H ⊆ K with ∆(H) ≤ αK ln n, we let θ(K, H) denote the

number of choices of βm edges X such that (i) K + X satisfies (Q1)–(Q4) and

(ii) λ(K − H) = λ(K + X − H). Then

(3)
∑

i,j

ai,j ≤
∑

K,H

θ(K, H).

This is because for each (i, j) with ai,j = 1 there is a corresponding Ki,j =

Gi − Xi,j such that Gi = Ki,j + Xi,j satisfies (Q1)–(Q4) and an Hi such that

λ(Ki,j − Hi) = λ(Ki,j + Xi,j − Hi).

Now if K + X satisfies (Q1)–(Q4) then from Lemmas 4 and 8 we see that to

ensure λ(K − H) = λ(K + X − H), X must avoid at least (n/30)2/2 edges i.e.

θ(K, H) ≤

(

N − (1 − β)m

βm

)

(899/900)βm.

Consequently,

∑

K,H

θ(K, H) ≤
αm
∑

t=0

(

N

(1 − β)m

)(

(1 − β)m

t

)(

N − (1 − β)m

βm

)

(899/900)βm

≤ m

(

N

(1 − β)m

)(

(1 − β)m

αm

)(

N − (1 − β)m

βm

)

(899/900)βm

= m

(

N

m

)(

m

βm

)(

(1 − β)m

αm

)

(899/900)βm.

Let νH denote the number of i such that Gi satisfies (Q1)–(Q4) and yet

Gi − Hi non-Hamiltonian and let M =
(

N
m

)

. We must show that νH = o(M).

It follows from Lemma 9 that

∑

i,j

ai,j ' νH

(

(1 − α)m − n

βm

)

.
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On the other hand, Lemma 10 implies

νH
(

N
m

) /
m

(

m
βm

)(

(1−β)m
αm

)

(899/900)βm

(

(1−α)m−n
βm

)

≤ m

(

me

(1 − α)m − n − βm

)βm (

(1 − β)e

α

)αm

(899/900)βm

= o(1),

and Theorem 2 follows.
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